Winamp Logo
Machine Learning Podcast Cover
Machine Learning Podcast Profile

Machine Learning Podcast

Russian, Technology, 5 seasons, 56 episodes, 2 days, 9 hours, 8 minutes
About
Это подкаст о машинном обучении от неспециалиста для неспециалистов. Буду рассказывать о развитии индустрии, проводить ликбез, объяснять терминологию и профессиональные жаргонизмы, общаться с профессионалами из индустрии Искусственного Интеллекта. Я сам не так давно начал погружаться в эту тему и по мере своего развития буду делиться своим пониманием этой интересной и перспективной области знаний. Почта для обратной связи: kms101@yandex.ru Сообщество подкаста в ВК: https://vk.com/mlpodcast Телеграм-канал: https://t.me/toBeAnMLspecialist Я в телеграме: @kmsint
Episode Artwork

#056 ML Юрий Окуловский. Гаражные стартапы в условиях бигбиза

Гостем сегодняшнего выпуска стал Юрий Окуловский - Senior Data Scientist, кандидат физико-математических наук, ранее руководитель лаборатории искусственного интеллекта и робототехники УрФУ, также вы, возможно, его знаете как автора нескольких видеокурсов по программированию и рациональному мышлению. Юрий уже был гостем подкаста примерно три года назад и мы снова решили встретиться пообщаться, тем более у Юрия интересный взгляд на происходящие изменения в обществе, связанные со стремительным развитием технологий. В подкасте обсуждаем как превратить нейросеть в своего личного литературного негра, нужно ли гуманоидное тело современному секс-роботу, как сделать свою собственную Алису из Бесконечного лета, почему менеджеров автоматизировать проще, чем программистов, почему дохли куры у Ленина, почему корпорации не могут позволить себе делать, действительно, персонализированные и полезные продукты на базе ИИ, а также многое-многое другое.Ссылки выпуска:Предыдущий выпуск подкаста с Юрием "Искусственный Интеллект в мире моды и как подготовиться к Сингулярности" (https://mlpodcast.mave.digital/ep-11)Курсы по программированию (Юрия и не только): https://ulearn.meКурс Юрия по Научному Мышлению: https://stepik.org/course/578Телеграмм-канал Свидетели сингулярности: https://t.me/witnessesofsingularityСсылки на технологии, обсуждаемые в подкасте (https://t.me/toBeAnMLspecialist/786)Буду благодарен за обратную связь!Вступайте в книжный ML-клуб, где мы читаем книги по машинному обучению и смежным темам!MLBookClub (https://t.me/+HIXnIwXIIFAyYzYy). Условия участия (https://t.me/toBeAnMLspecialist/750)Подписывайтесь на телеграм-канал "Стать специалистом по машинному обучению" (https://t.me/toBeAnMLspecialist)Мой телеграм для связи (https://t.me/kmsint)Также со мной можно связаться по электронной почте: kms101@yandex.ruЯ сделал бесплатный курс по созданию телеграм-ботов на Python и aiogram на Степике (https://stepik.org/120924). Присоединяйтесь, если хотите научиться разрабатывать телеграм-ботов!И буквально месяц назад я открыл доступ к пре-релизу нового курса по продвинутой разработке телеграм-ботов с элементами микросервисной архитектуры (https://stepik.org/a/153850?utm_source=mlpodcast&utm_campaign=ep_56)Выразить благодарность можно добрым словом и/или донатом (https://www.tinkoff.ru/rm/kryzhanovskiy.mikhail11/NkwE718878/)
2/6/20241 hour, 28 minutes, 22 seconds
Episode Artwork

#055 ML Илья Гусев. Как запускать большие языковые модели локально

Гостем выпуска стал Илья Гусев - известный NLP-специалист, сделавший большой вклад в область своими опенсорс-проектами, среди которых анализатор морфологии, генератор стихов, сборка различных датасетов и некоторые другие. Один из таких проектов как раз и стал поводом к сегодняшнему общению. Это большая языковая модель, заточенная на работу с русским языком - Сайга. Но говорим в выпуске мы далеко не только о ней. Илья сделал классный исторический экскурс в современные языковые модели, рассказал некоторые подробности об их устройстве, о тех подходах, которые применяют, чтобы такие модели можно было запускать на домашнем компьютере, как с помощью языковых моделей можно решать разные задачи и стоит ли вообще использовать локальные модели. Интересного и полезного прослушивания!Ссылки выпуска:Статья Ильи на Хабре "Как (быстро) сделать русский локальный ChatGPT" (https://habr.com/ru/articles/759386/)Сервис для запуска больших языковых моделей локально - lmstudio (https://lmstudio.ai/)Репозиторий сервиса oobabooga, с помощью которого можно запустить веб-интерфейс для работы с LLM локально (https://github.com/oobabooga/text-generation-webui)Репозиторий сервиса Text Generation Inference (TGI), который позволяет развертывать и поддерживать LLM (https://github.com/huggingface/text-generation-inference)Статья на arxiv "Self-Consuming Generative Models Go MAD" с анализом того, к чему приводят разные подходы обучения LLM на синтетических датасетах, сгенерированных другими LLM (https://arxiv.org/abs/2307.01850)Пост Ильи со списком материалов для погружения в NLP (https://t.me/natural_language_processing/81627)Буду благодарен за обратную связь!Вступайте в книжный ML-клуб, где мы читаем книги по машинному обучению и смежным темам!MLBookClub (https://t.me/+HIXnIwXIIFAyYzYy)Подписывайтесь на телеграм-канал "Стать специалистом по машинному обучению" (https://t.me/toBeAnMLspecialist)Мой телеграм для связи (https://t.me/kmsint)Также со мной можно связаться по электронной почте: kms101@yandex.ruЯ сделал бесплатный курс по созданию телеграм-ботов на Python и aiogram на Степике (https://stepik.org/120924). Присоединяйтесь, если хотите научиться разрабатывать телеграм-ботов!И буквально неделю назад я открыл доступ к пре-релизу нового курса по продвинутой разработке телеграм-ботов с элементами микросервисной архитектуры (https://stepik.org/a/153850?utm_source=mlpodcast&utm_campaign=ep_55)Выразить благодарность можно добрым словом и/или донатом (https://www.tinkoff.ru/rm/kryzhanovskiy.mikhail11/NkwE718878/)
1/18/202441 minutes, 56 seconds